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. object of this note is*to record»qur derivations of the T L= '
relationships between weighting‘factors “in smoothing operators and

their spectral response. Both periodic and non-periodic functions

in an infinite domain are treated. Some. basic tools for discrete
functions are derlved in the next section. e

Jﬂ’ IR

II. Basic Mathematical Tools - LT

We start by developing some basic mathematlcal tools for
periodic discrete functions. Only two of these tools, (3a) and
(3e) below, will be used in this paper, but we will develop the
others here in anticipation of our use of them elsewhere.

Consider w and w”; two functions of a set of integers, m,.-
and a variable, p, which may be either discrete or contlnuous.

m : o .
w (u) z g, cos un ' T Qa) o
n=0 -
_ o | . .
m;(u) =n£° o, sin un | - o (1b)

The discrete function o, is introduced as a convenience in the
following derivations. It is always associated with a summation,
2(,), and has the value % at the upper and lower limits as

written, and is unity elsewhere. Thus in (1),

=% 1ifn=20
orn=nm

=1 if n #0
and n # m

NOW'con51der a difference of sin un, taken over an 1nterval
in n of unity. We indicate the dlfference by. the operator

() = Oy, = Oy

sin p(n + %) - sin u(nl-_%j‘>

Gn sin un

2 sin %y ° cos pn




_sense, e. g.,

_-Thus, if p is not a multiple of ‘2n,'i.é;;eu'flggf”ﬁhefe_kfis - T
any integer (1nc1udlng zero), o : “’_ S : T RS T
~¢°SWPQ = % ese %u ° 5n 81n ua* . ‘u_Li_ui'Aefef;f’?ffrg;,nt
B S m- ;ff“ e - - i
-mm(u) =:2 csc éu Z sn Gn sin un IR
‘d : - 8 . n— - - .
The dlfferences under the summatlon cancel everywhere except at
the limits:- :
wp(u) =% cse Lu-
sin u(m + %) + sin u(m - é)
* 2|~ sin u(%) - sin u(-%) .
='% eot Ly - sin um" DEEE - ~(2a)
A similar derivation from (1b) yields :
w'(u) =% cot hu +(L ~cos ym) . (2b)
If U = 2kr, then cos pn = 1 and sin pn = 0, and o T

m
w (2km) =} o (1)

=m
n=o
m;(éﬁﬁ) T s (o) =0

n=o

Equations (2a) and (Zb) are consistent w1th these in a limiting

Lim % cot % +» sin ym = m

w>2kmw

Lim % cot %u - (1 - cos ym) %Jﬁf
2k ‘ e o

We will regard, for convenience, (2a) and (75) to be valid for

all y, with the understandlng that 1ndeterm1nants ‘are to be re-

solved in a limiting sense.

From (la) and (2a) if u is continuous



Lo -

: '_’amg_z c; nsin un - T
;‘Bu n=o . - __'"' o -
= % (cot i sin<yn0 EO B
u' - . - DA - ° - A E . . : el -
| =y csc2 o - sin um +’m cot B ¢ cos um
T . ~ =-cscu [w - m(l -+ cos u)] “wm .

A similar derivation from (1b) and (Zb) ylelds

Bw’

B = Z' o, 0 cos un = -0~ csc u +. wm

n=o

If p dis dlscrete the same formulas hold for the summatlon ‘as can
easily be shown. Again, any 1ndeterm1nants are to be resolved in a -

Iimiting sense.

In summary, our basic tools are
m .

w () = Y g, cos un

n=g : :

]

L cot LBu ¢ sin um ' (3a)

I

: m
w” = o_ sin pn
S(w) =) o sinu

_ n=o0
- B z -c n sin un
U nZo
=wm+ w cscu - %m(l + cos u) csc u - (3c)
C 3w’ m. . - : A -
— = Z Op R cOS im = wm - w” €sc | ' “(3d)
U p=o :

I cot Ly <(1 - cos ym) (3b)

Now, we w111 sllghtly extend the meanlng of w.' Consider
e .
m%M(u) = z o, cos yn

n=o

where M is an integer. If M is even, wiy(n) is given by (la)
and (2a), but if M is odd, the upper limit, %M, does not exist
as an integer. In the latter case, it must be understood that
the summation extends only to include %(M~-1) and since n ¥ BM
at that limit as writtem, o, = 1 there. Following the deriva-
tion of (2a), we find that S i

%M(u) 3 csc &y - sin %ﬂM ;7 if M is odd: : _(3e).

Again, all indeterminants are to be resolved-in a limiting sense.



III, Smoothing in an’ Infinlte ‘Domain ~ Vi et T SRR V'f":;?;‘
- ’First we_assert ‘}if. - T e =
B e B
fj-=-Er 2 B f e6s, A(j - i)dA RS W
N - g L . T
where 1 and j are 1ntegers, and £ is an arbltrary functlon, not
necessarily periodic, given at the set of integer j.’ This is a ..
true assertion, for the integral vanishes except for.j = i; where
it is 7. Thus there is only one non-zero term 1n the summation; -
namely, f 1tself
Note that (4) is equivalent to the set
T : . " R
£ = %f [a(x) « cos A + b(A)~ sin Ajldr (5a)
o - L .
a(d) = z fj cos Aj ) 3 - (5b)
' 4o . , - ' ,
b(A) = ) £, sinAj . (50) .
= - ] ) ; : e

if £. is appropriately restricted for very large j so that the summa-
tiong in (5b) and (5c) are unambiguous. The equivalence of (4) and (5) -
can easily be shown by substituting from (5b) and (5¢) into (5a). 1In
making such a substitution, the variable of summation, j, must be -
changed to, say i, for a and b are not functions of j in (5a).

Now, looking at (5), we will construct a function,vE:, related -
to £., through its spectral components: I

J : : : :
o ‘ ‘f‘j= L7 [E0) cos A3 + BN+ sin Ajldr (é;j' B
a(d) =wd): a(d) =W } £, cos A (6b)
- - | e L
BO) =w() - bM) =w®: [ fosindji . (6e)
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.. We have multiplied the “sifie ‘and- cosine phase of ‘each oomponehhu

by the same number, W(A), so have not changed ‘their phases.  The.
n.-f, therefore is 1n the nature of a smoothed {or unsmoothed)

s . .
w—\_r:».-,w B e -

If we not substitute from (6b) and (6C) into (53), we may L

write the result- e -
Feo '

séur -.-

SR AT A j w(;\)o-cos ch snas @

i-T 4=

If we next invent a variable, 17,

it=1 -1
and substitute intoh(7), we may write the result as the set3
e : | SR R
£, = ’ W C ~. (8a
1 i=2_m‘ fj+i Wy _ , T (,_)

. 1 : ’ o : ‘
»Wi,=‘;' " W(A)-,cos AL - dx : R (8b)
o .

But (8b) has the form of (Sa), Where a(A) = w(}) and b(}) =
and therefore, :

w(}) = X Wy cos Al
1— -0 .
Equation (8b) shows W; to be an even functlon of i, that is,
Wy = W+1’ therefore :

w() =2 Z oy Wy cos AL | :’(8c)_

i=o

As with fJ in (5a), Wi in (8c) must be approprlately restrlcted
“for very large i.

Equatlon (8a) may be regarded as describing a "smoothing"
process, with i being the distance from the central point, j,
and Wy being the corresponding weight given. each point in. the

smoothlng.' Given a set of such weights," W;, the response
may be determined by (8c). If, on the other hand we were '
given a desired response, w(A), the "smoothing" weights,. 1,
could be determined from (8b). '




. SmOOthing”PeriodicVFunctiOns

If fj cycles in‘i points, that is, if'  

fia7 = £
where k is any integer, we assert

LY

g =5 Loty 1 oopeos BEEE G9
=0 =0

where % ‘is an integer, and may be related to A in (4):

‘."9,=;2_§&. | , » - L

In (9) the upper limit, %J, on the summation over % does not
exist as an integer if J is odd. 1In that case it is to be
understood that the summation extends only to include 2 = %(J-1),
where since % # %J, o, = 1. : : ’ S

Equation (9) is true for reasons similar to those for (4).
The summation over &, according to (3a), is if J is even:

o (D] -5 con 24 et (G0 -
which vanishes unless

gzr_cgﬁgk“'

j.e., i = j - kJ. In that case its limiting value is }3J. If J

" is odd, we use (3e) for the summation over %z

. [Zn =] ] -3 ese U L gip (zzgi:z) 3 9]
1.7 J J PR J .2

which also vanishes unless i = j - kJ; in,which case its‘iimiting
value is also %J. - ' ’

Again, in (9) as in (4), unless j = kJ, where k is any integer,

there is only one term in the summation over i, namely fj—kJ, and

(9) is merely a reassertion of the periodicity of f:



If j kT, there are two terms. each equal to J/2 but they are
. the.terms for i =0 and i ='J, for which c"— % Note that (9)

e ﬁ»r S - L

j z dz(a cos A i+ b sin A J) - " ;(10a)
- gm0~ o T ~
‘ J . -~ ~.' ) > o B ‘_ »“
ap f.J z o3 f cos 123, : - : - _v(lob)
. J=o . ' '
9 J
b, =3 ) F f sin A3 (10c)
- j=o
Now, we construct a function, fj’ related to £, throﬂgh
its spectral components: : : J '
= Z dz(a cos XZJ + b sin A, ] o (11a)
=0 v
a =wa, =w, * 2 2 G f cos A J . {11b)
[ Al S AR 5
_ . J e S :
b, = ngg =W, * 3-‘2 Ujfj sin ij : ‘ (llc)-
j=o o ’
If we substltute from (11b) and (1le) into (11a), we may wrlte
the result,. _ o e e .
R . y 3 “ig . e T mai4, et
‘ = 3-.2 i£4 ) Tw, C€OS 2 (3—1) R (12)
i=o =0 . .

We next invent a variable, i*
i*=1 -

and substitute into (12), at the same time noting that any limits
which differ by J may be used in the summation over i because of
the periodicity of fJ. We write the result as

‘is equi alent to the system - — , o




But (13b) has the form ‘of (10a) with a2'= %—w and bz~— 0, and

‘therefore, ) R e -
= g, W cos A 1
: 3 i=o i
Because Wi’ accordlng to (13b) is periodic and even in i,
w,=2] oW cos )i " o ase
i=o : o A

Equation (lBa) descrlbes a "smoothing" process, with
"smoothing" weights and responses related to each other by
(13b) and (13c).

. . V. Maxima of [m’.l

Now, cons1der some of the propertles of w (u) . ‘The funda-
mental definition of w” is : :
m

< = G‘ in un
0= () n_X__ pSin wo

and therefore,
e e *-N&(kﬂ) = 0;-k is any integer

Furtherﬁore, w* is periodic in u, with period 27
wp(u + 2km) = az(n)
and it is odd in p: -
’(-u) - w’(u)
Thus, w” at p = kr is not only zero, it changes sign there and
therefore is neither a maximum nor minimum there. : For the same

reasons, we also conclude that in examining w” for its largest
absolute value, we may limit our attentlon to the range '

." 0 <<




o .

)

We can, however, quickly llmit our attention to an ‘even-

__smaller ‘range. We have .+ . . .

made up of the two factors, cot %u and sin? Yum. The factor o
sin? um is positive definite and 0 < cot 4u < = in the range

0<ugm, and therefore w” is everywhere p051t1ve in our range.. '

- . -

Now, -~ : ot _ LT

0 < cot %u < cot I lif T« p <
0 < gin? Igm < 1 ™ o

ahd therefore

os_w‘.<cct.721n_1ifl<»u <7
. m

But R
m’ L = cot -l
m, 2m

: . . . ki
Therefore, the largest maximum is not in the range FSuH<T, and -

we now limit our attention to the range

0<ux<?h
m

‘The necessary condition for maxima and minima is

0 = Bw” _ sin 33um | mcos %u ¢ cos Lum
du - sin %y | = sin Lum .
| 7 sin &

sin %pu .

Note that this condition is not satisfied for U - 7:!1' 3

-and its slope there is negative, consistent with a maximum closer

to the origin. We therefore further 11m1t our-attention to the

‘range

0<yu<l
oo a

In that range, our necessary condition may be written

0 = tan ¥um -~ m sin y

“We -call the right-hand member F:

F = tan %um - m sin u

9

o= cot Mu o sfn? Mpm we  a 0 LT



~ and COHSider 1t along with i fi st two derivatlves with respect K
Sto ws e Lo e
o »:F‘ = n(s secg @um - cos u) ' J~~ ' o Ll _
_F” = m(sm Sécz %um « tan 4um + sin W) B - Lo
Now : -
: Lim. - - B -
10 F=20
and -
Lim .
U0 FF=-m<0
which shows F < 0 near the origin. But
Lim
T =<+ x
+T
p 3
which shows F = 0 has at least one root in the range 0 < u < %-,
.7 Bt in that range, F°* < 0, and therefore F = 0 has only.one -
. root there. : :
“The range in which the 1argest maximum occurs can be further
1imited. Because for 0 < u,- :
: m-.sin y < mu,
o - therefore ' :
A N .  tan m <my o o 4 S
oY, h ' ' '
) » tan %um < 2 : . SR .
. TR e SR S

-Because the left-hand member is unity in the neighborhood'of the
origin, and monotonically increases to infinity at u =T,

| wm < (um)
»ﬂﬂmare‘(pm) satlsfles
“tan %(um) = (m) 0 %:'(um)c <
which has a unique solutiom:

m(um)c-= 0.74202ﬂ.




Stnms fm sy . e . -

‘therefore’

L . sinmp <tanlgm o v -
or, - o - L
and, therefore . : . R

Ty < L : .-

To summarize "for the largest maximum of the’ absolute value
of w”(u), u satisfies the set:

tan Lum ~?m sin u =10
0.57 < umi_< 0.74202n

1

m < o

A

VI. General Discrete Operétors .'

" Our previous use here of the term "smoothing operators" has meant those
linear operators_that do not change phase relationships. ‘For illustration,
in constructing fi; in (6) and (11), we multiplied a(}) and b(}) by the same
variable, w(}), td get a(1) and BN, respectively. We have shown that an
operator that does not change phase relationships is symmetrical, or "even,"
~i.e., W 4 = Wy. 1In this section, which has been added to an earlier version

of this Offlce Note, we will - develop the theory for general dlscrete operator.
Parenthetlcally, we should point out that '"smoothing," as we have previ-
"~ ously defined it, does not necessarily leave the mean value of the field
unchanged. For instance, a second- dlfference operator, such.as Wi = 1,.=2, 1,-
for i = -1, 0, +1, respectively, -does not change phase relationships, and is
therefore called a smoothing operator, but reduces the mean value of the
field to zero. More commonly, the term "smoothing" implies that the mean
value of the field (A = 0) is unaffected, as well as phase relationships.
This simply implies that ' - ' :
W, = 1.
‘ {= —x i . o
In order to avoid confusion in this section, we will call operators "even"
if Wogy = Wyy; and "odd"  if W_g = -Wpy. "'Symmetrical" operators are "even."

11



e By =]

Now, according
be written -

. fj f
E ot
o

B =)

We apply to_f.
the result f

. o
£, =]
342

- The function fﬁ

th

and so may Wj:
. ! . 1 ;'r
W = ;‘fo
a(d) =
_ i=
©

i=

[l

Hh

™
[}

0, then W_; =
0, then W_ ;i =

:Substitutlon fr

3=

Fh|

1
™

I M—g

i

Inventing a new vari

— —1 W
=& Ic

to-;g):;;;;;ﬁe;;l é;scre;;-;uncs?on’ ff;.méywj

[a(X)e co%.lJ + £(Al-;Si?,*J]dA '-;. —“(;435;—«
fpeosai - ety
‘; fitéin ii ?;;“ ) T ]  "(14c):{;

Fyvs Mg

may be written in spectral space:

[3(A): cos Aj + b+ sin Ajldr.

[alr) - éds A+ B(A) - sin Aildr -

Wi cos Al

-

Wi'siu Ai

-C0

J a general dlscrete operator, w1th welghts Wi, writing

(15a)

@sb)

- (186)
(17a)

@)

Wi and the operator is even.. On the othér hand,

-W; and the operator is odd i

om (16) into (lSa) ylelds

fj+i !: [a(d) cos A1 + g(l)'isip Ai]dx

-C0

ab}e of summation

=j+i



- and substituting, after ébme,maﬁipulation we'get'

B e ) | SR
_fj = %. jo | Z B £, [a(d)- cos Ai—-l- 8O- sin Al cos A3 o
| +[a(r)- sin Ai —'B(A)f'cdsvli] siﬁ Aj
Comparing‘this with (15b), we_fipd T o
a(d) = z fi [a(r) cos AL + B(\). sin- Ai]
i= ~x E : s
- +o BT |
b)) = § £ [a() sin A - B(X) cos Ai]
12 = , .
Therefore,‘ﬁecause of_(l4b)_and'(iéc), ‘
300 = a)- a() + B+ b - asa
BO) = -8()* a(l) + a()- bQ) - asy

Thus, given the set of weights, Wj, associated with an =
‘operator, its response is determined by (17) and (18).  If on the
other hand, the respomnse [3()) and b(X) or equivalent information]
is given, the weights are determined by (16) and the solution of
(18) for o and B: B ‘ : - ' ' IREER

aa+bhb

a(X) = 'EFF??EE : | | ,_ _ | ‘ . @9a)
e 5) =%—2p" a R (19b)

A general discrete operator can be separated into two parts, an
even part and an cdd part, To show this, we take a general discrete

operator with weights W,;, and invent two new operators, with weights -

~A; and By, and with eacﬁ related to Wy: = .

Amwmg AR G0

By = H(Wy - W_y) - T - (20b)

Note that Wy is the sum of Ai and Bj:

Wy = Ay + By o (21)

13




Also_ note that Ai is even, and Bi is odd'

Noting (22), and substituting from (21) into- (17), we get

Now consider two general discrete operators, with welghts

1= 50y + Wy

= %0y - Wy

a(A)

BV

2 G A
Lo

oi=l

+a
o
1 .

)
)

R |

coslli

2 z By sin Al

(22a)

(23a)

(23b)

WS and W!,.which operate successively on a field f; deflned by
(14):,Thepresult of the operation with W1 by itsel

11" [z°00)-
F:fo [3° ()

+¢% + B°b

-8% + 0% -

cos Aj + B°(A) - sin Ajldr :

Next W] operates on Eg, and we call the result ?3:

ih|
Cde
i ]

jol}

o

A I .
;{fo [a (-

a'z® + B'b°

-8'3° + o'B°

cos A + B(A)+ sin AjldA

Substituting from (24) into (25), we find

where

a

o'

o a+ B_b

=Ba + a.B.

%' - B°gY

a’B* + a'g°

14

(24a)

(24b)

(26a)

(26b)

(27a)

(27b)




- Now, Iboking at (27), a sufficient.coﬁditioﬁ for the coﬁbinéd
Tresponse of W; and Wi'to be even and positive for all A is -

o' = 4a® _énd.“*;_ B | "‘_(285) |
R '
fo; then : o | o |
» a(a®,8%,0",8") = a°2 + 8§2_i> 1A >'3 f;.:"f' | ’(25#),r
v B(a®,8%a",8) =0

o : B S .

Equations (29) imply a relationship between Wiland W', for
according to (16), . *

W; = l.fﬂ [0°(X): cos AL + B°(A)- sin Ai]dA

- . ki) o] - i
Wo=2L [T [a°(0): cos Ai - B°(A)- sin Aildr
i T "o . ’ o .

Changing the sign of i everywhere in the last equation, we find
-i

W', = Wii‘ : o ' ‘ . 5 (30)

 which is a sufficient condition on the weights for an even and
globaily positive respomse. » ’ '
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